石灰石-石膏法脱硫技术问题初探
来源:德清爱振环保设备有限公司 阅读:2281 更新时间:2011-01-04 10:181 石灰石-石膏系统中吸收塔的结垢问题
1.1 结垢机理
1)石膏终产物超过了悬浮液的吸收极限,石膏就会以晶体的形式开始沉积,当相对饱和浓度达到一定值时,石膏晶体将在悬浮液中已有的石膏晶体表面进行生长,当饱和度达到更高值时,就会形成晶核,同时,晶体也会在其它各种物体表面上生长,导致吸收塔内壁结垢。
2)吸收液pH值的剧烈变化,低pH值时,亚硫酸盐溶解度急剧上升,硫酸盐溶解度略有下降,会有石膏在很短时间内大量产生并析出,产生硬垢。而高pH值亚硫酸盐溶解度降低,会引起亚硫酸盐析出,产生软垢。在碱性pH值运行会产生碳酸钙硬垢。
1.2 解决方法
1)运行控制溶液中石膏过饱和度最大不超过130%。运行中控制石膏浆液密度在一合适的范围内(1075~1085 kg/m3),将有利于FGD的有效、经济运行
2)选择合理的pH值运行,一般PH在5.4-5.5为合适,尤其避免运行中pH值的急剧变化。
3)向吸收液中加入二水硫酸钙或亚硫酸钙晶种,以提供足够的沉积表面,使溶解盐优先沉积在表面,而减少向设备表面的沉积和增长。
4)向吸收液中加入添加剂如:镁离子、乙二酸。乙二酸可以起到缓冲pH值的作用,抑制二氧化硫溶解,加速液相传质,提高石灰石的利用率。镁离子的加入生成了溶解度大的MgCO3,增加了亚硫酸根离子的活度,降低了钙离子浓度,使系统在未饱和状态下运行,以防止结垢。
5) 采用新的液柱塔工艺,结垢可得到较好的解决。
2 脱硫系统的腐蚀与防腐
2.1 腐蚀机理
1)烟气中的SO2、HCl、HF等酸性气体在与液体接触时,生成相应的酸液,其SO32-、Cl-、SO42-对金属有很强的腐蚀性,对防腐内衬亦有很强的扩散渗透破坏作用。
2)金属表面与水及电解质形成电化学腐蚀,在焊缝处比较明显。
3)结晶腐蚀,溶液中的硫酸盐和亚硫酸盐随溶液渗入防腐内衬及其毛细孔内,当系统停运后,吸收塔内逐渐变干,溶液中的硫酸盐和亚硫酸盐析出并结晶,随后体积发生膨胀,使防腐内衬产生应力,尤其是带结晶水的盐在干湿交替作用下,体积膨胀高达几十倍,应力更大,导致严重的剥离损坏。
4)环境温度的影响。由于GGH故障或循环液系统故障,导致塔内烟温升高,其防腐材料的许用应力随温度升高而急剧降低。温度急剧变化,由于防腐内衬与基体的膨胀系数不同,导致不同步的膨胀,因应力使内衬粘接强度下降。由于温度的上升,降低了内衬材料的耐腐蚀性和抗渗透性,加速了内衬老化,由于防腐内衬施工中存在如气泡、裂纹等缺陷,受热应力作用迅速发展,介质渗透进去后又起到了加速作用。
5)浆液中由于含有固态物,落下时对塔内物质有一定的冲刷作用,特别是对于塔内的凸出物区。
2.2 防腐技术
1)合理控制pH值(一般PH在5.4-5.5为合适)。
2)选择合理的FGD烟气入口温度,并选择与之相配套的防腐内衬。
3)严把防腐内衬的施工质量。
4)由于吸收塔一般现场制作,必须在吸收塔制作过程中保证焊口满焊,焊缝光滑平整无缺陷,内支撑件及框架不能用角钢、槽钢、工字钢,应用圆钢、方钢为主,外接管不能用焊接,要用法兰连接。
5)选择合理的防腐材料。对于静态设备的防腐,第一种,在炭钢本体衬防腐材料,第二种,利用耐腐蚀的合金材料。采用防腐内衬,主要材料为玻璃鳞片树脂和橡胶内衬及玻璃钢。
玻璃钢当温度低于80℃时,能安全的运行,超过80℃,玻璃钢材质就不适合,所以采用玻璃钢必须有可靠措施控制入口烟温和塔内温度。
采用耐腐蚀合金材料造价昂贵,国外尤其是美国应用较多,不太适合中国国情,其主要材料有高硅铸铁,超低炭钢如316L和317L,或者是镍基合金。但效果反映不是很好。近来,又出现一些非金属材料如花岗岩及陶瓷,其防腐耐蚀性能优良,但制作困难。
对于动态设备防腐耐磨,主要采用铸铁+橡胶衬里,或炭钢+橡胶衬里,或直接用不锈钢制作,对于GGH和BUF等大型设备,除了选用合适的材料外,其合理的工艺流程和布置位置,布置方式显得更加重要。
塔内采用橡胶,其衬胶要求如下:
· 吸收塔底部至2.0m高的区域至少衬2×4mm丁基合成橡胶;
· 吸收喷淋区域至少衬2×4mm丁基合成橡胶;
· 除雾器下方的吸收塔壁至少衬1×4mm丁基合成橡胶;
塔内如果采用衬鳞片,则鳞片树脂的平均厚度至少为1.8mm。
吸收塔入口段烟道由合金钢板或复合钢板制作,长度应超出干湿界面处300mm。
没有进行内衬防腐处理而又与浆液或烟气冷凝液相接触的金属设备,应由耐酸腐蚀不锈钢/合金钢制作。
3 系统设计、运行中的几个重要参数
3.1 吸收液的pH值
从二氧化硫的吸收来讲,高的pH值有利于二氧化硫的吸收,pH值=6时,二氧化硫吸收效果最佳,但此时,亚硫酸钙的氧化和石灰石的溶解受到严重抑制,产品中出现大量难以脱水的亚硫酸钙,石灰石颗粒,石灰石的利用率下降,运行成本提高,石膏综合利用难以实现,并且易发生结垢,堵塞现象。而低的pH值有利于亚硫酸钙的氧化,石灰石溶解度增加,按一定比例鼓入空气,亚硫酸钙几乎可以全部得到就地氧化,石灰石的利用率也有提高,原料成本降低,石膏的品质得到保证。但低的pH值使二氧化硫的吸收受到抑制,脱硫效率大大降低,当pH=4时,二氧化硫的吸收几乎无法进行,且吸收液呈酸性,对设备也有腐蚀。一般PH在5.4-5.5为合适。
3.2 液气比(ca\s)
液气比也是设计中的一个重要参数,它在数字上就是石灰石-石膏法脱硫系统操作线的斜率。它决定了石灰石的耗量,由于石灰石-石膏法中二氧化硫的吸收过程是气膜控制过程,相应的,液气比的增大,代表了气液接触的机率增加,脱硫率相应增大。但二氧化硫与吸收液有一个气液平衡,液气比超过一定值后,脱硫率将不在增加。此时,由于液气比的提高而带来的问题却显得突出,出口烟气的雾沫夹带增加,给后续设备和烟道带来玷污和腐蚀;循环液量的增大带来的系统设计功率及运行电耗的增加,运行成本提高较快,所以,在保证一定的脱硫率的前提下,可以尽量采用较小的液气比。
3.3 系统传质性能
系统传质性能越好,系统的脱硫率就越高。系统传质系数与物系、填料、操作温度、压力、溶质浓度、气、液、固三者的接触程度有关。选择合理的吸收塔,提高烟气流速,有利于提高系统传质速率,减少传质阻力,在优化脱硫效率的同时,还能降低投资成本,降低运行成本。
3.4 石灰石粒度
参与反应的石灰石颗粒越细,在一定的质量下,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率越高,但在使用同样的研磨系统前提下,石灰石出料粒度越细,研磨系统消耗的功率及电耗越大。所以在选择石灰石粒度时,应找到反应效果与电耗的最佳结合点。
3.5 Cl-含量
氯离子含量虽然很小,但对脱硫系统有着重大的影响。首先,由于SO2、H2SO3、H2SO4、HCl在吸收塔中很快与碱性物发生反应,生成硫酸钙和氯化钙,由于硫酸钙几乎不溶于水,SO42-浓度非常小,可以忽略不计,相比之下,氯化钙极易溶于水所以Cl-的浓度相对较大,其腐蚀影响就比SO42-大得多,如果Cl-没有被及时排除,降低浓度,将造成很大的腐蚀破坏。Cl-在脱硫系统中是引起金属腐蚀和应力腐蚀的重要原因,当Cl-含量超过20 000×10-6时,不锈钢已不能正常使用,需要用氯丁橡胶,玻璃鳞片做内衬。当Cl-浓度超过60 000×10-6时,则需更换昂贵的防腐材料。
其次,氯离子还能抑制吸收塔内的化学反应,改变pH值,降低SO42-去除率;消耗石灰石等吸收剂;氯化物又抑制吸收剂的溶解;由于抑制了石灰石的溶解,使石膏中的石灰石含量增加,而工业要求较高品质的石膏中石灰石含量不超过2%。
Cl-含量增加引起石膏脱水困难,使其含水量大于10%。Cl-含量增加严重降低石膏品质,因为工业上对石膏中的Cl-含量有严格的要求,Cl-超标使石膏板不能成型,综合利用困难。
氯化物的增加,使吸收液中不参加反应的惰性物质增加,浆液的利用率下降,要达到预想的脱硫率,就得增加溶液和溶质,这就使得循环系统电耗增加。
综而言之,氯在系统中主要以氯化钙形式存在,去除困难,影响脱硫效率,后续处理工艺复杂,设计工艺中必须充分考虑其影响。
3.6烟尘含量
烟气中的飞灰在一定程度上阻碍了SO2与脱硫剂的接触,降低了石灰石中Ca2+的溶解速率,同时飞灰中不断溶出的一些重金属如Hg、Mg、Cd、Zn等离子会抑制Ca2+与HSO3-的反应。实践试验证明,如果烟气中粉尘含量持续超过400 mg/m3(干),则将使脱硫率下降1%~2%,并且石膏中CaSO4·2H2O的含量降低,白度减少,影响了品质。同时,大量的飞灰也会堵塞喷头。一般控制吸收塔入口飞灰浓度小于100 mg/Nm3。
结论:
(1)通过以上方法可基本消除结垢现象,减轻脱硫系统的腐蚀,使设备安全稳定有效地运行。
(2)湿法烟气脱硫过程中,烟气与脱硫剂的接触反应时间越长、吸收塔浆液循环量越多越有利于脱硫率的提高。
(3)保持吸收塔浆液pH在5.4~5.5之间,可使FGD保持较好的脱硫效果和石膏品质,pH太高不利于Ca2+的析出和石灰石的充分利用,pH过低则影响SO2的吸收。
(4)吸收塔浆液密度过高会降低脱硫率,过低时脱硫剂的利用不彻底,保持浆液密度在1075~1085 kg/m3之间,可获得较好的脱硫效果。