基于改进支持向量机的石煤提钒行业清洁生产评价研究
更新时间:2016-04-21 10:31
来源:环境科学学报
作者:
阅读:1538
摘要:采用遗传算法(GA)对支持向量机(SVM)进行改进,并将其应用于石煤提钒行业清洁生产评价.在系统研究石煤提钒工艺类型的基础上,根据前期已建立的石煤提钒行业清洁生产评价指标体系,提出GA改进SVM的应用思路,通过对3种工艺类型企业的现场数据采集,形成训练和测试样本,并利用GA算法确定出各类参数(惩罚参数C和核函数参数g),分别为强酸浸工艺C=2.1049,g=5.2184;弱酸浸工艺C=0.0035286,g=1.9947;水浸工艺C=0.39587,g=1.4105.GA-SVM模型测试结果表明,分类精度达到100%.通过与其他评价方法对比表明,训练好的GA-SVM方法针对小样本数据在分类精度和可操作性上都较其他方法有明显优势,实现了对石煤提钒行业清洁生产水平的定量评价.
使用微信“扫一扫”功能添加“谷腾环保网”
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。
使用微信“扫一扫”功能添加“谷腾环保网”
如果需要了解更加详细的内容,请点击下载 201604211031096718.zip
下载该附件请登录,如果还不是本网会员,请先注册