媒体/合作/投稿:010-65815687 点击这里给我发消息 点击这里给我发消息 发邮件

为助力环保产业高质量发展,谷腾环保网隆重推出《环保行业“专精特新”技术与企业新媒体传播计划》,七大新媒体平台,100万次的曝光率,为环保行业“专精特新”企业带来最大传播和品牌价值。

    
谷腾环保网 > 水处理 >> 技术动态 > 正文

抗生素药厂废水处理研究报告

更新时间:2011-05-12 11:02 来源: 作者: 阅读:8418 网友评论0

摘要:本文通过对抗生素药物废水处理的研究,阐述了废水对环境的危害,和废水处理的必要性和现阶段我国使用的处理方法和未来预测可以使用的方法前景。抗生素类药品是目前应用最为广泛的药物之一,在其生产过程中所产生的废水具有COD浓度高、色度及味度大、硫酸盐浓度高、难于生物降解等特点。方法主要有混凝预处理和生化处理。

 关键词:抗生素;废水处理;研究

概述

抗生素:抗生素是微生物、植物、动物在其生命活动过程中产生的化合物,是具有在低浓度下选择性地抑制或杀灭它种微生物或肿瘤细胞能力的化学物质,是人类控制感染性疾病、保障身体健康及防治动植物病害的重要药物。抗生素的生产以微生物发酵法进行生物合成为主,即通过微生物将培养基中某些分解产物合成具有强大抗菌素或抑菌作用的药物。

抗生素生产废水水质特征:抗生素废水可分为:提取废水、洗涤废水和其他废水。该类废水成份复杂,有机物浓度高,溶解性和胶体性固体浓度高,PH值经常变化,温度较高,带有颜色与气味,悬浮物含量高,含有难降解物质和有抑菌性作用的抗生素,并且有生物毒性。其具体特征如下:

①COD浓度高

其中主要为发酵残余基质及营养物、溶媒提取过程的萃余液,经溶媒回收后排出的蒸馏釜残液,离子交换过程排出的吸附废液,水中不溶性抗生素的发酵滤液,以及染菌倒罐废液等。这些成分浓度较高.

②废水的SS浓度高

其中主要为发酵的残余培养基质和发酵产生的微生物丝菌体。

③存在难生物降解和有抑菌作用的抗生素类毒性物质

④硫酸盐浓度高(一般认为好氧条件下硫酸盐的存在对生物处理没有影响,但对厌氧生物处理有抑制作用。)

⑤水质成份复杂

中间代谢产物、表面活性剂和提取分离中残留的高浓度酸、碱、有机溶剂等原料成分复杂,易引起pH波动,影响生物反应活性。

⑥水量小且间歇排放,冲击负荷较高

由于抗生素分批发酵生产,废水间歇排放,所以其废水成分和水力负荷随时间也有很大的变化,这种冲击给生物处理带来极大的困难。

处理方法

1、混凝预处理

抗生素废水的浊度和悬浮物浓度较高,因而在水质预处理部分采用混凝法预处理,去除高悬浮物和浊度,以便使水质史适宜进行后续生物处理。

混凝的基本原理

混凝澄清是给水和废水处理实践中的一种常用的单元操作它是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为絮凝体,然后予以分离除去的水处理方法。胶体溶液或悬浮液稳定的原因是:固体微粒的粒度太细,同时带有同性电荷形成布朗运动;另外,溶液中还有一种亲水的胶体,它是可溶性的大分子,如蛋白质、淀粉和腐植酸等,它们的分子上都带有亲水的极性基团如一OH、一COOH、一NH3等对水具有较强的亲和力,在分子的周围保持较厚的水层,能发生膨胀,有形成真溶液的倾向。胶体或悬浮液形成分散体系就是依靠细微粒度,荷同性电荷以及在水中的溶解作用而形成稳定状态的,因而必须投加混凝剂来破坏他们的稳定性,使其相互聚集为数百微米以至数毫米的絮凝体,才能予以除去。混凝就是在混凝剂的离解和水解产物的作用下,使水中胶体污染物质和细微悬浮物脱稳并聚集为具有可分离性的絮凝体的过程,其中包括凝聚和絮凝两个过程,统称为混凝。

混凝的作用机理

在混凝处理中,主要是通过压缩双电层和电性中和机理起作用的。

凝聚作用

凝聚作用是指加入无机电解质,通过电性中和作用,压缩双电层,降价了ζ电位,减少微粒间的排斥能,解除布朗运动,使微粒能够靠近接触而聚集在一起的作用。

絮凝作用

有机絮凝剂是一种高分子聚合物,它的分子量很大,通过长碳链上的一些活性官能团可以吸附在分散体系中的微粒上。由于该聚合物是较长的线状结构,每个高分子化合物中都有许多官能团,可以在同一个分子吸附多个微粒,因而它在微粒之间起了架桥的作用,可以将许多微粒连结在一起形成一个絮团,这个絮团不断变成较大原絮团,因而加快了微粒的沉降速度。

混凝预处理对原水中的COD及硫酸盐浓度的影响

在进行混凝预处理时,除了希望通过混凝预处理去除较高的SS外,还希望能够同时去除水中的高浓度COD及某些生物抑制性物质,如硫酸盐。由于在进行水质保存时,引入了硫酸根离子,根据前述内容可知,抗生素制药废水中主要的生物抑制性物质就是硫酸盐。因而,在预处理部分,混凝预处理过程对COD及硫酸盐浓度变化的影响。随沉降时间的延长,COD及硫酸盐的去除率均会逐渐地增大,这主要是因为随着沉降时间的延长,不溶性的COD附着在絮凝体上而不断下沉,最终被除去的缘故。硫酸盐的去除为下一步的厌氧生物处理提供了便利,降低硫酸盐浓度,从而减少硫酸盐还原菌作用后生成的硫化氢不能及时地外排而造成对厌氧微生物的毒害作用。

2、废水的好氧生物处理

废水的好养生物处理原理

好氧生物处理是在提供游离氧的前提下,以好氧微生物为主,使有机物降解,稳定的无害化处理方法。废水中存在的各种有机污染物,以胶体状、溶解状的有机物为主,作为微生物的营养源。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来。有机物被微生物摄取后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化,合成为新的原生质的组成部分,即微生物自身生长繁殖。这一部分就是废水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥。

活性污泥法的基本流程

活性污泥法是一种应用最广的废水好氧生物处理技术,它是指将空气连续鼓入大量溶解有机污染物的废水中,经过一段时间,水中即形成生物絮凝体一活性污泥,在活性污泥上栖息、生活着大量的好氧微生物,这种微生物以溶解有机物为食料,获得能量,并不断增长,使废水得到净化。它由曝气池、二次沉淀池、曝气系统及污泥回流系统等组成。由初次沉淀池流出的废水与二次沉淀池底部回流的活性污泥同时进入曝气池,在曝气池的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触,废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。

活性污泥处理系统有效运行的基本条件是:

(l)废水中含有足够的可溶性易降解有机物,作为微生物生理活动所必需的营养物质;(2)混合液含有足够的溶解氧;(3)活性污泥在池内呈悬浮状态,能够充分地与废水相接触;(4)活性污泥连续回流,及时地排除剩余污泥,使混合液保持一定浓度的活性污泥;(5)没有对微生物有毒害作用的物质进入。

活性污泥法的净化过程

在正常发育的活性污泥的微生物体内,存在着由蛋白质、碳水化合物和核酸组成的生物聚合物,这些生物聚合物是带有电荷的电介质。因此,由这种微生物形成的生物絮凝体,都具有生理、物理、化学吸附作用和凝聚、沉淀作用,在其与废水中呈悬浮状和胶休状的有机污染物接触后,能够使后者失稳、凝聚,并被吸附在活性污泥表面。

活性污泥具有很大的表面积,能够与混合液广泛接触,在较短的时间内,通过吸附作用,就能够除去废水中大量的呈悬浮和胶体状的有机污染物,使废水的COD值大辐度地下降。

小分子有机物能够直接在透膜酶的催化作用下,透过细胞壁被摄入细菌体内,但大分子有机物则首先被吸附在细胞表面,在水解酶的作用下,水解成小分子后再被摄入到细胞体内。一部分被吸附的有机物可能通过污泥排放被去除。

曝气的原理

曝气是采用一定的技术措施,通过曝气装置所产生的作用,使混合液处于强烈搅动的状态,并使空气中的氧转移到混合液中去。空气中的氧向混合液中的转移一般是以刘易斯和惠特曼的双膜理论为基础。双膜理论的主要论点是:当气、液两相接触并作相对运动时,接触界面的两侧,存在着气体与液体的边界层,即气膜和液膜,气膜和液膜间相对运动属于层流,而在其外的两相体系中均为紊流。氧的转移是通过气、液膜间进行的分子扩散和在膜外进行的对流扩散完成的。对难溶于水的氧来说,分子扩散的阻力大于对流扩散,传递的阻力主要集中在液膜上:由气膜中存在的氧分压梯度和液膜中存在的氧浓度梯度,形成了氧的转移推动力。

3、废水的厌氧处理

废水的厌氧处理原理

废水的厌氧处理是在没有游离氧的情况下,以厌氧微生物为主对有机物进行降解,稳定的一种无害化处理方法[。在厌氧生物处理过程中,复杂的有机化合物被降解,转化为简单、稳定的化合物,同时释放能量。其中,大部分能量以CH4的形式出现,可回收利用。同时,仅少量有机物被转化,合成新的细胞组成部分。

厌氧处理的发展

1896年人们在认识到沼气的产生是一个微生物学过程的基础上,发明了第一座用于处理生活污水的厌氧消化池。40年代,在澳大利亚出现了连续搅拌的厌氧消化池,改善了厌氧污泥与废水的混合,提高了处理效率。50年代中期,出现了厌氧接触反应器,这种反应器是在连续搅拌反应器的基础上于出水沉淀池中增设了污泥回流装置,使部分厌氧污泥又重新回到反应器中,从而使SRT大于HRT,处理效率与负荷显著提高。至60--70年代,先后出现了厌氧滤器与升流式厌氧污泥床,推动了以微生物固定化和提高污泥和废水混合效率为基础的一系列新的高速厌氧反应器的研究与发展,出现了厌氧流化床及膨胀颗粒污泥床等厌氧反应器。

厌氧处理的原理

第一阶段,可称为水解、发酵阶段。复杂有机物在微生物的作用下进行水解发酵。水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用,因此它们在第一阶段被细胞外酶分解为小分子。如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶水解为麦芽糖和葡萄糖,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。而后,这些物质在发酵细菌的细胞内转化为更简单的化合物并被分泌到细胞外。发酵是有机化合物既作为电子受体也是电子供体的生物降解过程,在此过程中,溶解性有机物被转化为以挥发性脂肪酸为主的末端产物。这一阶段的主要产物有挥发性脂肪酸、酸类、乳酸、CO2、H2、H2S、甲胺等。与此同时,酸化菌也利用部分物质合成新的细胞物质。酸化过程是由大量的、多种多样的发酵细菌完成的。其中重要的类群有权梭状芽孢杆菌和拟杆菌。它们大多是严格厌氧的,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够保护严格厌氧菌免受氧的损害与抑制。

第二阶段,称为产氢、产乙酸阶段,是由一类专门的细菌,称为产氢产乙酸菌,将丙酸、丁一酸等脂肪酸和乙醇等转化为乙酸、C02、H2

在标准条件卜,乙醇、丁酸和丙酸不会被降解,因为在这些反应中不产生能。但氢浓度的降低可使这些反应导向产物方向。在运转良好的反应器中,氢的分压一般不高于lOPa,平均值约为0. 1 Pa。当作为反应产物之一的氢的分压如此之低时,乙醇、丁酸和丙酸的降解则可以产生能,即反应的实际自由能成为负值。

在由氢和二氧化碳形成甲烷时,只有在产乙酸产生的氢被产甲烷菌有效利用时,系统中氢才能维持在很低的分压。根据平均氢分压可以计算出反应器里一个氢分子平均在0. 5s以内被消耗,这意味着氢分子在其产生后仅仅能移动0. 1 mm的距离。也说明这种生化反应需要密切的共生关系存在于菌种之间。这种现象称为“种间氢传递”。不仅存在着氢的传递,有迹象证明“种间甲酸传递”也是相当重要的。

第三阶段,称为产甲烷阶段。由产甲烷菌利用乙酸、H2、C02,产生CH4

在厌氧反应器中,所产甲烷的大约70%由乙酸歧化菌产生。在反应中,乙酸中的羧基从乙酸分子中分离,甲基最终转化为甲烷,羧基转化为二氧化碳,在中性溶液中,二氧化碳以碳酸氢盐的形式存在。

已知利用乙酸的产甲烷菌是索氏甲烷丝菌和巴氏甲烷八叠球菌。两者的生长速率有较大的区别。当乙酸浓度较低时,索氏甲烷丝菌较巴氏甲烷八叠球菌优势生长。由于索氏甲烷丝菌对底物有更高的亲和力,在废水处理中可能取得较高的有机物去除率,且索氏甲烷丝菌的生长有利于形成品质良好的颗粒污泥。因此这种优势生长对系统运行是非常有利的。

厌氧消化微生物

1、发酵细菌(产酸细菌)

主要包括梭菌属、拟杆菌属、丁酸弧菌属、真菌属和双歧杆菌属等。

这类细菌的书要功能是先通过胞外酶的作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸、醇类等。研究表明,该类细菌对有机物的水解过程相当缓慢,pH和细胞平均停留时间等因素对水解速率的影响很大。不同的有机物的水解速率不同,如类脂的水解就很困难。因此当处理的废水中含有大量类脂时,水解就会成为厌氧消化过程的限速步骤。但产酸的反应速率较快,并远高于产甲烷反应。

发酵细菌大多数为专性厌氧菌,按其代谢功能,发酵细菌可分为纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋自质分解菌和脂肪分解菌。

2、产氢产乙酸细菌

产氢产乙酸菌包括互营单胞菌、互营杆菌属、梭菌属和暗杆菌属等。这类细菌能把各种挥发性脂肪酸降解为乙酸和H2

3、产甲烷细菌

产甲烷菌分为两类:一类主要利用乙酸产生甲烷,另一类数量较少,利用氢和二氧化碳的合成生成甲烷。

难生物降解有机物的厌氧处理

Giger和Robert定义“难生物降解”为:如果一个化合物在一种特定的环境下,经历任意长时间仍保持它的同一性,就可将这个化合物定义为难生物降解化合物。这其中也包括某些可以生物降解的化学品,在某些环境条件下可能变成难生物降解物质。

难生物降解的有机物的化学结构阻止了各种不同程度的微生物降解。庆幸的是在当今越来越快的产生难生物降解有机物的同时出现了一个全新的厌氧生物技术,即难生物降解物质共代谢几级处理。许多含有一低浓度难生物降解有机物的工业废水具有足够的BOD和COD,可作为一级基质供二级代谢,而不需要向废水中补充其他电子供体。

对于二级代谢,要求一级基质和二级基质有一定的比值。对某些氯化脂肪族化合物一级基质和氯化脂肪族化合物的重量比为30~300。如果废水中本身没有一级基质,则可以补充像甲醇这样的物质作为电了供体或共代谢物。此外,对于许多难生物降解物质,一级基质和二级基质(难生物降解化合物)的比值比进水中难生物降解化合物的绝对浓度更为重要。

厌氧反应中的硫酸盐还原

在处理含硫酸盐或亚硫酸盐废水的厌氧反应器中,这些含硫化合物会被细菌还原。硫酸盐和亚硫酸盐会被硫酸盐还原菌(SRB)在其氧化有机污染物的过程中作为电子受体而加以利用。SRB将硫酸盐和亚硫酸盐还原为硫化氢,会使甲烷产量减少。

根据所利用底物的不同,SRB可被分为三类:

氧化氢的硫酸盐还原菌(HSRB);

氧化乙酸的硫酸盐还原菌(ASRB);

氧化较高级脂肪酸的硫酸盐还原菌(FASRB)。

有机物的降解中少量硫酸盐的存在不会影响处理过程,但与甲烷相比,硫化氢在水中的溶解度要大得多,每克以硫化氢形式存在的硫相当于2克COD,因而在处理含硫废水时,尽管有机物的氧化已相当不错,COD的去除率却不令人满意。

4、抗生素废水的活性炭吸附

活性炭水处理的特点

活性炭吸附技术用于医药、化工及食品工业等方面,在国内外有多年的历史。活性炭水处理的特点为:

1、活性炭对水中有机物有卓越的吸附特性

由于活性炭具有发达的细孔结构和巨大的比表面积,因此对水中溶解的有机污染物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对用生物法和其它化学法难以去除的有机污染物,如色度、异臭、亚甲蓝表面活性物质、除草剂、杀虫剂、农药、合成洗涤剂、合成染料、胺类化合物及许多人工合成的有机化合物等都有较好的去除效果。

2、活性炭对水质、水温及水量的变化有较强的适应能力,对同一种有机物污染物的污水,活性炭在高浓度或低浓度时都有较好的去除效果。

3、活性炭对某些重金属化合物也有较强的吸附能力,如汞、铅、铁、镍、铬、锌、钻等,因此,活性炭用于电镀废水、冶炼废水处理上也有很好的效果。

4、活性炭水处理装置占地面积小,易于自动控制,运行管理简单。

5、饱和炭可经再生后重复使用,不产生二次污染。

6、可回收有用物质,如处理高浓度含酚废水,用碱再生后可回收酚钠盐。

活性炭吸附的基础理论

固体表面由于存在着未平衡的分子引力或化学键力,而使所接触的气体或溶质被吸引并保持在固休表面上,这种表面现象称为吸附。固体都有一定的吸附作用,但具有实用价值的吸附剂是比表面积较大的多孔性固体。活性炭就因为具有较大的比表面积而具有较高的吸附能力,可用作吸附剂。

吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附的,称为物理吸附;吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附的,称为化学吸附离子交换吸附是指一种吸附质的离子,由于静电引力,被吸附在吸附剂表面的带电点上。

活性炭的吸附速度

吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在废水中,吸附速度决定了废水和吸附剂的接触时间。吸附速度越快,所需的接触时间越短,吸附设备容积也越小。

吸附速度决定于吸附剂对吸附质的吸附过程。多孔吸附剂对溶液中吸附质吸附过程基本上可分为三个连续阶段:第一阶段称为颗粒外部扩散阶段,吸附质从溶液中扩散到吸附剂表面:第二阶段称为颗粒孔隙扩一散阶段,吸附质在吸附剂孔隙中继续向吸附点扩散:第三阶段称为吸附反应阶段,吸附质被吸附在吸附剂孔隙内的表面上。一般而言,吸附速度主要由膜扩散速度或孔隙扩散速度来控制。

由实验得知,颗粒外部膜扩散速度与溶液浓度成正比。对一定重量的吸附剂,膜扩散速度还与吸附剂的表面积的大小成正比。因为表面积与颗粒直径成反比,所以颗粒直径越小,膜韦、一散速度就越大。另外,增加溶液和颗粒之间的相对运动速度,会使液膜变薄,可以提高膜扩散速度。

孔隙扩散速度与吸附剂孔隙的大小及结构、吸附质颗粒大小及结构等因素有关。一般来说,吸附剂颗粒越小,孔隙扩散速度越快,即扩散速度与颗粒直径的的较高次方成反比。因此,采用粉状吸附剂比粒状吸附剂有利。其次,吸附剂内孔径大可使孔隙扩散速度加快,但会降低吸附量。

影响活性炭吸附的因素

1、吸附剂的理化性质

吸附剂的种类不同,吸附效果也不一样。一般是极性分子(或离子)型的吸附剂容易吸附极性分了(或离子)型的吸附质,非极性分子型的吸附剂容易吸附非极性分子型的吸附质。由于吸附作用是发生在吸附剂的内外表面上,所以吸附剂的比表面积越大,吸附能力就越强。另外,吸附剂的颗粒大小、孔隙构造和分布情况,以及表面化学特性等,对吸附也有很大的影响。

2、吸附质的物理化学性质

吸附质在废水的溶解度对吸附有较大的影响。一般来说,吸附质的溶解度越低,越容易吸附。吸附质的浓度增加,吸附量也是随之增加:但浓度增加到一定程度后,吸附量增加很慢。如果吸附质是有机物,其分子尺寸越小,吸附反应就进行得越快。

3、废水的pH值

pH值对吸附质在废水中的存在形态(分子、离子、络合物等)和溶解度均有影响,因而其吸附效果也就相应地有影响。废水pH值对吸附的影响还与吸附剂性质有关。例如,活性炭一般是在酸性溶液中比在碱性溶液中有较高的吸附率。

4、温度

吸附反应通常是放热的,因此温度越低对吸附越有利。但在废水处理中,一般温度变化不大,因而温度对吸附过程影响很小,实践中通常在常温下进行吸附操作。

5、共存物的影响

共存物质对主要吸附质的影响比较复杂。有的能相互诱发吸附,有的能相当独立地被吸附,有的则能相互起千扰作用。但许多资料指出,某种溶质都以某种方式与其他溶质争相吸附。因此,当多种吸附质共存时,吸附剂对某一种吸附质的吸附能力要比只含这种吸附质时的吸附能力低。悬浮物会阻塞吸附剂的孔隙,油类物质会浓集于吸附剂的表面形成油膜,它们均对接触时间吸附有很大影响。因此在吸附操作之前,必须将它们除去。

6、接触时间

吸附质与吸附剂要有足够的接触时间,才能达到吸附平衡。吸附平衡所需时间取决于吸附速度,吸附速度越快,达到平衡所需时间越短。

研究结果(废水处理试验结论)

1、针对此种废水,其混凝处理的最佳条件为:混凝剂品种为三氯化铁,质量百分比浓度为10%,每lL废水中需投加此种混凝剂0.2ml,其最适pH值为7。

2、进行废水的生化处理,可知废水中含有大量的隋性物质、难降解物质。

3、在T=33士1℃的条件下,确定其厌氧水解常数。

4、由于废水中含有多种有机化合物,在用活性炭进行吸附试验时,表现了一定的竞争作用,活性炭总吸附量不高。

5、对于厌氧处理中的硫酸盐,它的去除与废水中所含的COD有一定的关系。

讨论及建议

试验出现的问题

由于课堂时间的关系及试验设备等的限制,在试验中还存在着许多未能解决的问题,如:

1、混凝预处理时,未能探讨各种混凝剂对于后续生物的影响作用,特别是对厌氧菌的影响作用;

2、厌氧水解时,还应进行大分子物质的确定,及水解后小分子物质的确定;

3、应对水质进行全面的水质分析:

4、确定厌氧水解时间。

建议

针对废水中含有大量的难降解物质,难降解有机物的存在不仅自身很难通过活性污泥法等生物处理构筑物中的微生物作用得到去除,而且有时还会影响其它化合物的去除效果,总体表现为低的COD去除率,除了现有经常使用的固有方法,国内外科学家也提出了很多新的方法解决这些问题。

生物强化技术

生物强化技术就是为了提高废水处理系统的处理能力,而向该系统中投加从自然界中筛选的优势菌种或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质的方法。它是通过向自然菌群中投加具有特殊作用的微生物来增强生物量,以强化生物量对某一特定环境或特殊污染物的反应。

目前实施生物强化技术可通过如下三条途径:

(l)投加有效降解的微生物;

(2)优化现有处理系统的营养供给、添加基质(底物)类似物来刺激微生物生长可提高其活力;

(3)投加遗传工程菌。

超声波处理技术

超声波是由一系列疏密相间的纵波构成,并通过液体介质向四周传播。当声能足够高时,在疏松的半周期内,液相分子间的吸引力被打破,形成空化核。空化核的寿命约为0.1ps,它在爆炸的瞬间可以产生大约4000K和100MPa的局部高温高压环境,并产生速度约为110m/s具有强烈冲击力的微射流,这种现象称为超声空化。这些条件足以使有机物在空化气泡内发生化学键断裂、水相燃烧、高温分解或自由基反应。因而超声波对有机物的降解就是基于空化理论与自由基理论。

湿式催化氢化技术

湿式氧化法是处理高浓度、有毒有害、难降解废水的一种有效手段,它是在催化剂的作用下,在高温、高压的条件下,利用氧气或空气直接将污水中的有机物及含N、S等毒物分解成COZ、H20及N:等无害物以达到净化的目的。具有处理效率高,占地面积小,无二次污染等优点。

光催化降解技术

由于TiO2的化学稳定性高,耐腐蚀性能好,并且它具有深的价带能级,可以使一些吸热的化学反应在紫外光辐射激发下的TIO;粉粒表面得到实现和加速,另外,TiO2对人体无毒无害,因此,主要是利用光催化剂TiO2粉粒来研究光催化降解机理。

利用紫外光激发半导体光催化剂,半导体价带上的电子吸收紫外光后被激发到导带上,因而在导带上产生带负电的高活性电子,在价带上产生带正电的空穴,构成氧化一还原体系。溶解氧和水与电子及空穴在紫外光的激发作用下,最终产生具有高度化学活性的游离基OH,利用这种高度活性的自由基可以氧化分解包括用生物法难以降解的各种有机物并使之矿化。

微电解技术

微电解法又叫内电解法。其工作原理是在含有酸性电解质的水溶液中,铁屑和碳粒之间形成无数个微小的原电池,并在其作用空中间构成一个电场。通过反应生成的新生态铁离子具有较强的还原能力,使某些氧化态的有机物还原成还原态。并使部分难降解环状有机物环裂解,生成相对容易降解的开环有机物,从而提高废水的可生化性。铁离子时具有良好的絮凝吸附作用。另外新生成的氢也有较强的还原能力,对氧化态有机物也有还原作用。

萃取置换技术

萃取是基于可逆反应的络合萃取法,由于其对级性有机稀溶液的高效性和高选择性,操作简单、分离效率高,在废水处理领域具有广阔的应用前景。

微生物固定化技术

固定化微生物技术的机理是将微生物固定在载体土使其高度密集并保持其生物功能,在适宜的条件下还可增殖以满足处理工艺要求。适合处理高浓度有机废水的优势菌固化剂应具备以下特征:不被高浓度有机动性物或溶解氧溶解,具有良好的渗透性;不应被微生物所分解而应对微生物的固定具有良好的耐久性:应具有物理强度。固定化微生物的方式主要有结合固定化、交联固定化、包埋固定化和自身固定化等。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。

  使用微信“扫一扫”功能添加“谷腾环保网”

关于“抗生素药厂废水处理研究报告 ”评论
邮箱: 密码: 新用户注册

网友评论仅供其表达个人看法,并不表明谷腾网同意其观点或证实其描述。

2022’第九届典型行业有机气(VOCs)污染治理及监测技术交流会
2022’第九届典型行业有机气(VOCs)污染治理及监测技术交流会

十四五开篇之年,我国大气污染防治进入第三阶段,VOCs治理任务…

2021华南地区重点行业有机废气(VOCs)污染治理及监测技术交流会
2021华南地区重点行业有机废气(VOCs)污染治理及监测技术交流会

自十三五规划以来,全国掀起“VOCs治理热”,尤…

土壤污染防治行动计划
土壤污染防治行动计划

5月31日,在经历了广泛征求意见、充分调研论证、反复修改完善之…